Complex Unconditional Metric Approximation Property for $C_{Λ}(

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid Decay and the Metric Approximation Property

The central point of our proof is an observation that the proof of the same property for free groups due to Haagerup [2] transfers directly to this more general situation. A discrete group Γ satisfies property (RD) (Rapid Decay) with respect to a length function l on Γ if the operator norm of any element of the group ring can be uniformly majorised by a Sobolev norm determined by l. In detail, ...

متن کامل

On the unconditional subsequence property

We show that a construction of Johnson, Maurey and Schechtman leads to the existence of a weakly null sequence (fi) in ( ∑ Lpi ) 2 , where pi ↓ 1, so that for all ε > 0 and 1 < q 2, every subsequence of (fi) admits a block basis (1+ ε)-equivalent to the Haar basis for Lq . We give an example of a reflexive Banach space having the unconditional subsequence property but not uniformly so. Publishe...

متن کامل

Approximation of endpoints for multi-valued mappings in metric spaces

In this paper, under some appropriate conditions, we prove some $Delta$ and strong convergence theorems of endpoints for multi-valued nonexpansive mappings using modified Agarwal-O'Regan-Sahu iterative process in the general setting of 2-uniformly convex hyperbolic spaces. Our results extend and unify some recent results of the current literature.

متن کامل

The Strong Approximation Property and the Weak Bounded Approximation Property

We show that the strong approximation property (strong AP) (respectively, strong CAP) and the weak bounded approximation property (respectively, weak BCAP) are equivalent for every Banach space. This gives a negative answer to Oja’s conjecture. As a consequence, we show that each of the spaces c0 and `1 has a subspace which has the AP but fails to have the strong AP.

متن کامل

The Amalgamation Property for G-metric Spaces

Let G be a (totally) ordered (abelian) group. A Gmetric space (X, p) consists of a nonempty set A"and a G-metric />: XxX->-G (satisfying the usual axioms of a metric, with G replacing the ordered group of real numbers). That the amalgamation property holds for the class of all metric spaces is attributed, by Morley and Vaught, to Sierpiñski. The following theorem is proved. Theorem. The class o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 1996

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm-121-3-231-247